COMPLEX BIS(TERTIARYPHOSPHINE)DIMETHYLGOLD(III) CATIONS: PHOSPHINE EXCHANGE AND REDUCTIVE ELIMINATION OF ETHANE*

C. FRANK SHAW, III, JAMES W. LUNDEEN and R. STUART TOBIAS *Department of Chemistry, Purdue University, Lafayette, Indiana 47907 (U.S.A.)* **(Received August 28tb, 1972)**

SUMMARY

The. syntheses and reactivity of cationic dimethylgold(III) complexes $[(CH_3)_2\text{AuL}_2]^+$, L = P(CH₃)₃, P(CH₃)₂(C₆H₅), P(CH₃)(C₆H₅)₂, and P(C₆H₅)₃, have been examined. With the exception of $\tilde{P}(C_6H_5)$, the ligands react directly with $[(CH₃)₂AuX]₂, X=Cl, I, giving the bis(tertiaryphosphine) complex. The cationic$ bis(triphenylphosphine) complex can be produced only with a weakly coordinating ligand, e.g., CIO₄. PMR spectra indicate that phosphine exchange is rapid at 40° for all of the chlorides and iodides. The rates increase with increasing phenyl substitution on the phosphine, and non-bonded interactions are postulated as being responsible for the variation in exchange rate. Vibrational spectra indicate only minor electronic changes in the dimethylgold moiety with increasing phenyl substitution of the phosphine. Exchange is faster with I^- than Cl^- , suggesting that reaction occurs by a nucleophilic attack of halide ion on the cation. With $ClO₄^-$ as the anion, exchange is slow even with $\{(\text{CH}_3)_2\text{Au}[\text{P}(C_6H_5)_3]^{\text{+}}\}$ at room tempera**ture; however, in solution this cation undergoes a rapid reductive elimination of** ethane yielding ${Au[P(C_6H_5)_3]^+}$?ClO₄. There is evidence that analogous facile reductive eliminations occur with $[(CH_3)_2AuL_2^+]ClO_4^-, L=As(C_6H_5)_3$, Sb $(C_6H_5)_3$ suggesting steric crowding at gold contributes to the ease with which ethane is eliminated from these cations.

INTRODUCTION

The syntheses of stable cationic complexes of the type $[cis$ - $(CH_3)_2AuL_2^+]$, $L = P(C_6H_5)_{3}$, As($C_6H_5)_{3}$, Sb(C_6H_5)₃ and {(CH₃)₂Au[P(C_6H_5)₂CH₂]⁺} have been described previously¹. It was reported that $\{cis$ -(CH₃)₂Au[P(C₆H₅)₃]₂}ClO₄ exhibited rapid phosphine exchange in chloroform solution at 40° on the PMR time scale, while the Diphos complex $[(CH₃)₂Au[P(C₆H₅)₂CH₂]₂Cl$ did not. Moreover, it has been reported that the corresponding bis(trimethylphosphine) cation $\{(\text{CH}_3)_2\text{Au}[\text{P}(\text{CH}_3)_3]^{\text{+}}\}$ does not undergo rapid exchange in aqueous solution on the PMR time scale². In order to determine whether the nature of the phosphine affects the rate of exchange, we have examined the NMR and vibrational

* Supported by the National Science Foundation, Grant GP-23208 and by the Donors of the Petro**leum Research Fund, administered. by The American_ Chemical Society.**

. : $\mathbb{E}[\mathbb{E}^{\mathbb{E}} \times \mathbb{E}^{\mathbb{E}} \times \mathbb{E}^{\mathbb{E}}]$

:

spectra of complexes with the formulas $[(CH₃)₂AuL₂⁺], L=P(CH₃)₃, P(CH₃)₂$ (C_6H_5) , P(CH₃)(C_6H_5)₂, and P(C_6H_5)₃. Spectra of $\{(\text{CH}_3)_2\text{Au}[\text{P}(\text{CH}_3)_3]_2\}$ X, $X = CI^{-}$, I^{-} , were obtained with aqueous and chloroform solutions to determine the effect of solvent and of the anion.

The PMR parameters reported earlier for the ions $\left[\frac{CH_3}{A}\right]_2$ AuL $\frac{1}{2}$, L= $P(C_6H_5)_3$, As $(C_6H_5)_3$, and Sb $(C_6H_5)_3$, also exhibited some apparent inconsistencies. **The methyl resonances were at rather high field, apparently accidentally the same** for all three compounds at τ 9.14 ppm. Rapid phosphine exchange appeared to be indicated by the absence of coupling with $3¹P$. With these same ligands in compounds of the type $[(CH₃)₂AuCl_L]$, slightly different methyl chemical shifts were **observed as L was varied, and the protons were coupled to 31P in the phosphine complex. This apparently anomalous behavior of the cations was accepted. because** the Raman spectrum of a freshly prepared solution of $\{(CH_3)_2Au[P(C_6H_5)_3]\}$ **ClO, showed that no appreciable decomposition had occurred_**

Recently $CH_3AuP(C_6H_5)$ ₃ has been shown to undergo oxidative addition in methyl iodide followed by rapid exchange of methide for iodide between CH₃AuP- (C_6H_5) ₃ and $(CH_3)_2$ AuIP(C_6H_5)₃ yielding $(CH_3)_3$ AuP(C_6H_5)₃, and IAuP(C_6H_5)₃³. **The resulting trimethylgold product reacts rapidly at room temperature with methyl** iodide to produce two moles of ethane and $IAuP(C_6H_5)$ ₃. It now appears that such reductive eliminations may be much more facile with organogold(III) compounds **than previously believed_**

EXPERIMENTAL

Microanalyses were performed by the Purdue Microanalytical Laboratory.

$Compounds$

 ${cis-(CH_3)_2Au[P(CH_3)_3]_2}$. Trimethylphosphine (1.5 ml) was syringed directly into a solution of $[(CH₃)₂Au1]₂$ (0.561 g) in 15 ml of benzene. The solvent **and excess phosphine were decanted from the white precipitate which was dissolved in a large quantity of benzene and recrystallized by slowly adding petroleum ether** (b.p. 30-60^o). A second recrystallization was effected from chloroform by adding hexane. m.p. 126-130^o. (Found: C, 18.7; H, 5.04; Au, 38.7; P, 12.5. C₈H₂₄AuIP₂ calcd.: C, 19.0; H, 4.78; Au, 38.9; P, 12.2%.)

 ${cis-}(CH_3)_2Au[P(CH_3)_3]_2\}$ Cl. This was prepared as described above from $[(CH₃)₂AuCl₃$, m.p. 128–131^o, lit.² 128–131^o. (Found: C, 22.1; H, 6.10; Au, 45.4; **P, 14.5. C₈H₂₄AuClP₂ calcd.: C, 23.1; H, 5.83; Au, 47.5; P, 14.9%.)**

 $\{cis{-}(CH_3)_2Au[P(CH_3)_3]_2\}ClO_4$. A solution of $[(CH_3)_2AuI]_2$ (1.0 g) in benzene (10 ml) was stirred with NaClO₄ (0.342 g) dissolved in methanol (10 ml). **The solution turned yellow and was filtered to remove precipitated sodium iodide. To the remaining solution was added neat trimethylphosphine which caused an immediate white precipitate. The product was washed with hexane and dried over** P_4O_{10} . (Found: C, 20.0; H, 5.18; Au, 41.3; P, 12.7; C₈H₂₄AuClO₄P₂ calcd.: C, **20.1; H, 5.05.; Au, 41.2; P, 129 %.)**

 $\{cis$ (CH₃)₂Au[P(CH₃)₂(C₆H₅)]*I*. To 0.5 g of $[(CH₃)₂AuI]₂$ in petroleum ether (b.p. 30-60°) was added dropwise neat dimethylphenylphosphine until no further precipitate was formed. Benzene (20 ml) was added, and the solution was

stirred until the precipitate was broken into fine particles. The mixture was filtered, and the fluffy white powder was washed with hexane and dried over P_4O_{10} . m.p. 124-126°. (Found: C, 44.5; H, 4.28; Au, 26.1; P, 8.21. $C_{28}H_{3,2}$ AuIP₂ calcd.: C, 44.6; H, 4.44; Au, 26.3; P, 8.41 %.)

Attempted syntheses of $\{cis$ *-* $(CH_3)_2Au[P(C_6H_5)_3]_2\}X$ ($X=Cl^-$ and I^-). To 0.248 g of cis-chlorodimethyl(triphenylphosphine)gold $(\overline{III})^1$ in benzene (10 ml) was added an equimolar amount of triphenylphosphine in benzene (10 ml). Addition of ethyl ether did not induce precipitation, so the ether was removed on a Rotovac and methylcyclopentane added. After cooling *to O",* a precipitate did form which was shown by infrared spectroscopy to be chlorodimethyl(triphenylphosphine)gold(III). Similar results were obtained with the analogous iodide.

 ${\langle cis-(CH_3)_2Au[P(C_6H_5)_3]_2\}ClO_4$. Synthesis was by the method of Stocco and Tobias¹ (Found: C, 53.4; H, 4.39; Cl, 4.06; Au, 23.5; P, 7.10. C₃₈H₃₆AuClO₄P₂ calcd. : C, 53.5 ; H, 4.23 ; CI, 4.17; Au, 23.2; P, 7.28 %.)

 ${Au[PC₆H₅]}₂}ClO₄$. This compound was prepared by the method of Malatesta et al.⁴: m.p. 209-210°; lit.⁵ 203° (Found: C, 52.5; H, 3.57; Au, 23.9; P, 7.29. C3,H,,,AuCI04Pz calcd.: C, *52.7;* H, *3.67;* Au, *24.0;* P, *7.56x.)*

Solution decomposition of $\{cis$ $(CH_3)_2Au[P(C_6H_5)_3]_2\}ClO_4$

An almost saturated solution of $\{(\text{CH}_3)_2\text{Au}\}P(C_6H_5)_3\}$. ClO₄ (0.06 g) in CDCl, was prepared and allowed to stand at room temperature for ca 72 h in a 10 ml glass bulb. The clear, colorless solution was cooled to dry ice temperature and a sample transferred into the mass spectrometer. A blank was obtained with the CDCI, solvent.

Pyrolysis of $\{cis$ *-(CH₃)₂Au[P(C₆H₅)₃]₂}ClO₄ and* $\{cis$ *-(CH₃)₂Au[As(C₆H₅)₃]₂}ClO₄*

A sample of the phosphine complex (0.62 g) was placed in a 20 ml glass bulb. and the bulb was evacuated. The sample was placed in an oil bath, and the temperature was raised slowly. At 165° , rapid decomposition was observed. The evolved gas was analyzed by mass spectrometry. The residue contained metallic gold. A sample of the arsine complex (0.31 g) decomposed slowly at ca. 160 $^{\circ}$, and the gaseous products also were analyzed.

Nuclear magnetic resonance spectra

Routine spectra were obtained with a VarianA60A with the probe maintained at ca. 40°. Low temperature spectra (30° to -65°) were determined with a Varian A60 fitted with a variable temperature probe. For ^{31}P spectra, a Varian XL-100 spectrometer operating at 40.5 MHz was used.

Mass spectra

A Hitachi RMU-6A spectrometer operating with an ion current of 4.5×10^{-9} amp and an ion voltage of 75 eV was used.

Infrared spectra

A Beckman IR-12 spectrometer calibrated vs. indene and polystyrene was used to obtain spectra in the range $250-4000$ cm⁻¹.

 \mathcal{L}_{max} and \mathcal{L}_{max} . The \mathcal{L}_{max}

 $\label{eq:2} \frac{d\mathbf{y}}{dt} = \frac{1}{2} \sum_{\mathbf{y} \in \mathcal{Y}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y}$

 \mathcal{L}_{max} is a set \mathcal{L}_{max} , we have $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right)$

in.
Viited

 $\mathcal{O}(\log n)^{1/2}$

Pintera
Bright

COMPLEX BIS(TERTIARYPHOSPHINE)DIMETHYLGOLD(III) CATIONS

Ratian spectra

Spectra of microcrystalline powders were excited with a Spectra-Physics 125 He/Ne laser and obtained with a Jarrell Ash 25-300 spectrophotometer. Cali**bration was effected with background plasma lines.**

DATA AND RESULTS

Proton magnetic resonance data for the compounds are collected in Table 1. The effect of temperature on the spectrum of $\{cis$ -(CH₃)₂Au[P(CH₃)₂(C₆H₅)]₂}I **is illustrated in Fig. l.'The gold methyl resonances under conditions where exchange** is slow all are characteristic $A_3XX'A_3'$ spectra with small ² $J(^{31}P-^{31}P')$. The spectrum of $\{(\text{CH}_3), \text{Au}[\text{P}(C_6H_5), \text{I}_7\} \text{ClO}_4$, which previously had been reported to exhibit **rapid phosphine exchange at 40°, exhibits initially a similar triplet resonance for the gold methyls at room temperature_ The spectrum undergoes time dependent** changes, and these are illustrated for a CDCl₃ solution in Fig. 2. The initial spectrum is very similar to that of the isoelectronic, isostructural $\{cis$ -(CH₃)₂Pt $\{P(C_6H_5)_{3}\}^5$. Similarly, the parameters for the cation in $\{CH_3)_2Au[P(CH_3)_2(C_6H_5)]_2\}$ are very similar to those reported for the isoelectronic $\{(\text{CH}_3)_2\text{Pt}\big[\text{P}(\text{CH}_3)_2\text{C}_6\text{H}_5\big]_2\}^6$: $^{2}J(^{31}P-C^{-1}H)$ 10.2, 7.7 ; $^{2}J(^{31}P-M^{-31}P')$ ca. 2, 0.5; $^{3}J(^{31}P-M-C^{-1}H)_{trans}$ 8.0, 8.2; $3J(^{31}P-M-C^{-1}H)_{ci}$ 6.7, 6.3 Hz; respectively. The $3J(^{31}P-Au-C^{-1}H)$ and $2J(^{31}P-31P)$ **coupling constants were estimated by comparison of the observed spectra with those**

Fig. 1. Effect of temperature on the proton magnetic resonance spectrum of ${ (CH_3)_2Au [P(CH_3)_2(C_6 -]}$ H_5]₂} I in CDCl₃ solution.

Fig. 2. Changes with time in the proton magnetic resonance spectrum of $\{CH_3\}_2\text{Au}[P(C_6H_5)_3]_2\}$ ClO₄ in CDCl₃ solution at room temperature.

Fig. 3. Observed and calculated PMR spectra for (a) $\{(\text{CH}_3)_2\text{Au}[P(\text{CH}_3)_3]_2\}$, -40° : $^3J(^{31}P^{-1}H)$ $\pm 8.4, \pm 6.8, ^{2}J(^{31}P-^{31}P)0.5Hz$;(b){(CH₃)₂Au[P(C₆H₅)₂CH₂]₂}Cl:³J(³¹P-¹H) \pm 7.4, \pm 7.4, $^{2}J(^{31}P-^{31}P)$ 0.5 Hz.

TABLE 2

RAMAN AND INFRARED DATA (cm⁻¹) FOR CRYSTALLINE [(CH₃)₂AuL⁺] COMPLEXES

^a Sampled as microcrystalline powders in capillaries. ^b Data from ref. 1.

calculated using the program UEAITR⁷. Initial values were estimated using the approximate equations of Harris⁸. Calculated and observed spectra for {(CH₃)₂Au- $[$ P(CH₃)₃ $]_2$] and $\{$ (CH₃)₂Au $[$ P(C₆H₅)₂(CH₂) $]_2$ }Cl, which are typical, are given

COMPLEX BIS(TERTIARYPHOSPHINE) DIMETHYLGOLD (III) CATIONS

in Fig. 3. With the exception of the Diphos chelate, all of the compounds in chloroform solution exhibit resonances which are slightly broadened in comparison to TMS. The ³¹P NMR spectrum of $\{(\text{CH}_3)_2\text{Au}[P(\text{CH}_3)_3]_2\}$ at -30° in CDCl₃ with proton decoupling in the methyl region exhibits a single resonance at δ 15.45 ppm relative to 85% H₃PO₄.

Infrared and particularly Raman spectra, where the gold-carbon stretching vibrations have very high intensity, were recorded to probe electronic changes at the gold atom caused by varying the phosphine ligands. Data are collected in Table 2 for (AuC_2) stretching and for the symmetric CH_3 deformations.

DISCUSSION

The course of the simple bridge splitting reactions^{1,2} of dimethylgold halides is illustrated below. In chloroform solution, the cations, (III), should exist as intimate

ion pairs with the counter ions. This gives rise to slightly different chemical shifts for the gold methyl protons with $X = Cl^-$ and I⁻. The difference vanishes when the spectra are obtained with aqueous solutions.

The two nitrogen donors are poorer ligands than the phosphines for the dimethylgold moiety, and the bis complexes are not formed. For example, $[(CH₃)₂$ -AuCl]₂ and $[(CH_3)_2Au]_2$ dissolve in neat pyridine to yield only (II)⁹. Although $[(CH_3)_2Au(NH_3)_2^+]$ is present when $[(CH_3)_2AuCl]_2$ or $[(CH_3)_2AuI]_2$ dissolves in liquid ammonia⁹, crystallization yields a product which loses ammonia very readily yielding (II). In the presence of excess pyridine, the two resonances for the nonequivalent methyls of (II) collapse, and the process is first order in pyridine⁹. The same effect was observed here with excess triphenyl phosphine and $(CH₃)$ ₂AuIP- $(C_6H_5)_3$ during efforts to synthesize $\{ (CH_3)_2Au[P(C_6H_5)_3]_2 \}I$.

When L contains one or more methyl groups bound to phosphorus, the cationic bis(phosphine) complexes, (III), are produced. When the tertiary phosphine is varied with constant counter ion, the temperature at which the $A_3XX'A_3$ multiplet collapses decreases with increasing phenyl substitution. In the series $[(CH_3)_2AUL_2]I$, $L = (CH₃)₃P$, $(CH₃)₂(C₆H₃)P$, $(CH₃) (C₆H₃)₂P$, the temperatures are $>0^{\circ}$, ca,

 -10° , and ca. -30° , respectively, for CDCl₃ solutions. The most reasonable explanation for this order is that -nonbonded interactions between. the. **cis** phosphines increase as methyl groups are replaced successively by the bulkier phenyl groups. This shifts equilibrium (3) in favor of the neutral complex and free phosphine. Consistent with this hypothesis is the observation that $\{(\text{CH}_3)_2\}$ Au $[\text{P}(C_6H_5)_3]$ could not be prepared as the chloride or iodide^{1,2}, but with a weakly coordinating ligand such as $ClO_4^-,$ stable salts can be obtained².

While an-earlier report¹ indicated that phosphine exchange with ${ (CH₃)₂}$ - $Au[P(C_6H_5)_3]^+$ ClO₄ in chloroform solution was fast on the PMR time scale, this was not observed to be the case. Freshly prepared solutions in CDCl₃ gave the same A_3 XX' A'_3 spectrum. In this case, the slow exchange is a consequence of the presence of perchlorate. as the counter ion. Exchange appears to proceed via a nucleophilic attack of the anion on gold. In order to obtain comparable exchange rates with $[(CH₃)₂AuL₂]X, X=Cl, I,$ the iodide solution must be ca. 10[°] lower in temperature, consistent with a higher nucleopbilicity of iodide for gold. In addition the solvent is important. The absence of exchange observed by Shiotani and Schmidbaur² for ${({\rm CH}_3)_2\rm Au}[{\rm P(CH_3)_3}]_2{\rm }$ Cl in D₂O is a consequence of the poor nucleophilicity of water and the high fugacity of the phosphine in this solvent.

The chloroform solutions of $\{(\text{CH}_3)_2\text{Au}\,[\text{P}(C_6H_5)_3]_2\}$ ClO₄ do undergo a time dependent change as illustrated in Fig. 2. The resonance of τ 9.15 ppm, which previously was the only signal observed, was identified as ethane by the mass spectrum and by comparison of the PMR chemical shift with that of the ethane resonance in a saturated CDCl₃ solution. No methane was observed, and a simple reductive elimination reaction appears to occur. The phenyl resonance shifts to τ 2.40 ppm as ethane is eliminated. After the triplet signal characteristic of the cis-bis(phosphine) complex had disappeared, the clear solution was evaporated, and the residue was recrystallized from a chloroform-hexane mixture. This compound gave both PMR and infrared spectra identical to an authentic sample of $\{Au[P(C_6H_5)]_2\}CD_4$.

This reductive elimination reaction, (4), appears to have proceeded considerably more rapidly in our previous investigation¹ using CHCl₃ freshly distilled

$$
\begin{bmatrix}\nH_3C & P(C_6H_5)_3^+ \\
Au & \downarrow \\
H_3C & P(C_6H_5)_3\n\end{bmatrix} CIO_4^- \to \begin{bmatrix}\nCH_3 \\
H_3\n\end{bmatrix} + \begin{bmatrix}\nP(C_6H_5)_3^+ \\
Au & \downarrow \\
P(C_6H_5)_3\n\end{bmatrix} CIO_4^-
$$
\n(4)\n(4)

from sulfuric acid-as the solvent, and spectra obtained shortly after solution preparation showed only the ethane resonance. On the other hand, the solution Raman spectrum¹ recorded at ca. 22 $^{\circ}$ rather than 40 $^{\circ}$ as in the PMR measurements correctly indicated the presence of (IV) although the analysis reported for the sample recovered after the spectrum was obtained corresponds to $\{Au[P(C_6H_5)_3]_2\}CD_4$. We are at a loss to explain this difference in reaction rate, although it is possible that impurities in the chloroform solution, e.g., CCl_3^- , catalyze the reaction.

Crystalline $\{(\text{CH}_3)_2\text{Au}[P(C_6\text{H}_5)_3]^+_{2}\}$ ClO₄ shows no detectable decomposition after storage for over two years at 2° . A solution of $\{(\text{CH}_2)_2\text{Au}[P(C_6H_5)_3]\}$ ClO₄ in dried and degassed CDCl₃ was prepared on a vacuum line. This solution under-

COMPLEX BIS(TERTIARYPHOSPHINE)DIMETHYLGOLD(iII) CATIONS 373

went the same reductive elimination indicating that oxygen or other environmental contaminants are not involved in this reaction.

Both $\{(\text{CH}_3)_2\text{Au}[\text{As}(C_6H_5)_3]_2\}$ ClO₄ and $\{(\text{CH}_3)_2\text{Au}[\text{Sb}(C_6H_5)_3]_2\}$ ClO₄ also were observed previously to give only the τ 9.14 ppm resonance now identified as due to ethane, and so these ions also undergo facile reductive eliminations at room temperature. Pyrolyses of the solid bis-triphenylphosphine and triphenylarsine compounds gave ethane as the principal gaseous product as identified by its mass spectrum. Neither the solution decomposition nor the pyrolysis experiments yielded measurable amounts of methane.

The condition required for the facile reductive elimination appears to be coordination of two bulky ligands to the cis-dimethylgold(III) moiety. For example, the cation $\{cis$ -(CH₃)₂Au[P(CH₃)(C₆H₅)₂]⁺₂} was stable under the same conditions which led to elimination of ethane from $\{cis$ (CH₃)₂Au[P(C₆H₅)₃]₂}⁺. The tertiary phosphines also exert a rather high *trans* influence on the gold methyls and this may be a necessary but not sufficient condition. The order of *trans* influence of several ligands can be estimated from values of $v_e(AuC_2)$ ^{*} obtained from Raman spectra of compounds of the [cis-(CH₃)₂AuL₂] type: H₂O, 590⁹; OH⁻, 586¹⁰; NH₃, 579⁹ Cl⁻, 572¹⁰; Br⁻, 558¹⁰; S(CH₃)₂, 555¹⁰; As(C₆H₅)₃, 529¹; P(CH₃)₃, 522 cm⁻¹¹. If the phosphines are examined, the order is $P(C_6H_5)_3$, 536; $P(CH_3)(C_6H_5)_2$, 528; $P(CH_3)_2(C_6H_5)$, 526; $P(CH_3)_3$, 522 cm⁻¹; however, this may not reflect increasing trans-influence, because the Raman and infrared intensities of the $P(C_6H_5)$ compound clearly show that there is mixing of the (Au-C) and phenyl coordinates in the normal mode^{11} . Consequently, the variation among the phosphines may only reflect the effect of increasing vibrational mixing with increasing phenyl substitution.

Reductive elimination of ethane has been observed to occur with $(CH_3)_3$ - $AuP(C_6H_5)$ ₃ upon pyrolysis of the solid at 120[°], or upon warming of xylene solutions to 120 $^{\circ}$ and biphenyl solutions to 175 $^{\circ}$ 1². The trimethylgold compounds, however, are quite stable in chloroform solution at room temperature¹³ or in the case of $(CH_3)_3$ ^{AuP(CH₃)₃ as the neat liquid¹⁴. The facile elimination of ethane from the} $[(CH₃)₂AuL₂⁺]ClO₄⁻ compounds in solution certainly involves a concerted cleavage$ facilitated by steric effects involving these bulky ligands which also exert a large trans influence on the gold methyls.

As defined by Woodward and Hoffmann, these eliminations are cheletropic reactions¹⁵. If the two electrons from the breaking σ bonds are derived from the molecular orbital antisymmetric with respect to the plane normal to the C_2AUP_2 plane, they can be transferred to $d_{x^2-y^2}$ of the $\{Au[P(C_6H_5)_3]\}$ product with conservation of orbital symmetry completing the d^{10} configuration of the gold(I) complex.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. John Grutzner and Mr. Russell Carlsen who obtained the ³¹P nuclear magnetic resonance spectra and Miss Catherine Owens who helped in some of the syntheses.

^{*} The same series is obtained using $1/2$ ($v_s + v_{as}$), since the separations of these modes are all about **the same and of the order of 5-10 cm-'.**

C. F. SHAW, III, J. W. LUNDEEN, R. S. TOBIAS

REFERENCES:

- 1 G. C. Stocco and R. S. Tobias, J. Amer. Chem. Soc., 93 (1971) 5057.
- 2 A. Shiotani and H. Schmidbaur, Chem. Ber., 104 (1971) 2838.
- 3 A. Tamaki and J. K. Kochi, J. Organometal. Chem., 40 (1972) C81.
- 4 L. Malatesta, L. Naldine, G. Simonetta and F. Cariati, Coord. Chem. Rev., 1 (1966) 255.

وللدي فالقاوح

a na Se

- 5 E. O. Greaves, R. Bruce and F. M. Maitlis, Chem. Commun., (1967) 860.
- 6 A. J. Cheney, B. E. Mann and B. L. Shaw, Chem. Commun., (1971) 431.
- 7 Program 188, Quantum Chemistry Exchange Program, Indiana University, Bloomington.
- 8 R. K. Harris, Can. J. Chem., 42 (1964) 2275.
- 9 H. Hagnauer, G. C. Stocco and R. S. Tobias, J. Organometal. Chem., 46 (1972) 179.
- 10 W. M. Scovell and R. S. Tobias, Inorg. Chem., 2 (1970) 945.
- 11 F. Stocco, G. C. Stocco, W. M. Scovell and R. S. Tobias, Inorg. Chem., 10 (1971) 2639.
- 12 G. E. Coates and C. Parkin, J. Chem. Soc., (1963) 421.
- 13 S. W. Krauhs, G. C. Stocco and R. S. Tobias, Inorg. Chem., 10 (1971) 1365.
- 14 C. F. Shaw and R. S. Tobias, Inorg. Chem., (1973) in press.
- 15 See, e.g., R. B. Woodward and R. Hoffmann, Angew. Chem. Int. Ed. Engl., 8 (1969) 781.